
Decomposition in Task Based Multi-Agent Planning Systems
with an application to logistic problems∗

A.W. ter Mors J.M. Valk C. Witteveen†

Faculty of Electrical Engineering, Mathematics and Computer Science,
Delft University of Technology, P.O. Box 5031, 2600 GA Delft, The Netherlands,

{a.w.termors, j.m.valk, c.witteveen}@ewi.tudelft.nl

Abstract

We discuss a general framework for coordinating self-interested agents in the pre-planning
phase that can be used to decompose multi-agent task based planning problems into indepen-
dent subproblems. The decomposition allows the agents to solve their part of the problem
without the need to interact with other agents and such that the resulting plans can be easily
combined into a joint plan. We illustrate the application of the framework to the logistic
planning problems used in the AIPS planning competition. After a thorough analysis of the
problem we show how existing planners can benefit from such a decomposition technique.

1 Introduction and motivation

In this paper we deal with task planning problems such as occur in e.g. manufacturing, supply-
chain management and air traffic control. Often such problems can be modelled as multi-agent
planning problems: using their individual tools and capabilities, a set of planning agents must
come up with a joint solution to a problem consisting of a set of interdependent tasks. Typically,
none of the agents is capable to solve all tasks and each agent is assigned a disjoint subset of tasks
to perform. To complete its part of the job, each agent has to come up with a plan to perform the
tasks assigned to it. Since interdependent tasks may be assigned to different agents, in general,
the agents are not completely free to construct their own plan; therefore some form of coordination
is needed between them to come up with a joint plan to complete the planning problem.

The currently dominant approaches towards coordination in multi-agent systems (cf. [4, 2, 9])
come down to either post-planning coordination, where coordination between the agents is estab-
lished after the completion of the individual planning processes, or coordination during planning,
where the agents continuously exchange planning information and adapt their plans to arrive at a
joint solution. In both coordination approaches it is more or less taken for granted that agents are
prepared to exchange information about their (partial) plans and to revise their plans in order to
coordinate their solutions. This assumption makes them less suitable to solve planning problems
with self-interested, competitive agents that do not want to be interfered during their planning
activities and also are not prepared to revise their plan once it has to be combined with other
plans into a joint solution.

In this paper we want to concentrate on planning methods for such non-cooperative agent
systems. In such environments a pre-planning coordination approach seems to be a better alter-
native: before the agents start to plan, there is a single coordination phase (often part also part
of the task assignment process) ensuring that the agents can plan independently and do not need
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to revise their plan afterwards. Stated this way, the pre-planning coordination comes down to a
generalization of a classical problem decomposition method like, e.g. divide-and-conquer.

Elsewhere (see [7]), we have presented a complete overview of this pre-planning coordination
method together with a complexity analysis of the planning problems associated with this ap-
proach. In this paper we will give a brief overview of the framework and then show how it can
be applied to a well-known set of logistic planning problems as used in the AIPS 2000 planning
competition. Considering the logistic planning problem as a multi-agent planning problem, we
will show that the application of this pre-planning coordination framework enables the design of
a very simple pre-planning protocol. This protocol enables a decomposition of the original plan-
ning problem into a set of subproblems that can be solved by the agents independently from the
others, and in such a way that the resulting plans (solutions to the subproblems) can be sim-
ply joined to constitute a joint plan for the total planning problem. We show that even these
subproblems cannot be solved optimally (in reasonable time) and, moreover, that it is unlikely
that there exist δ-approximation algorithms with δ < 1.2 for them. We present a very simple
and efficient 1.2-approximation algorithm to solve the subproblems ( i.e., local planning prob-
lems). Combining the protocol with these polynomial approximation algorithms, we achieve a
polynomial 1.25-approximation algorithm for solving the complete logistic planning problems.

Finally, in Section 4, we present some results obtained by applying our approximation algorithm
to the logistic benchmark problems used in the AIPS2000 planning competition, showing that also
existing planners can benefit from this simple coordination protocol.

2 The Coordination by Pre-Planning Framework

We consider task planning problems where a set T of interrelated tasks has to be solved by several
autonomous agents, each having their own (task) capabilities and using their own (planning) tools.
The set T consists of elementary tasks and is assumed to be partially ordered. Each elementary
task, or simply task, is a unit of work that can be performed by a single agent. The partial order
is induced by a dependency relation between tasks. Without loss of generality, we will assume
that this dependency relation can be specified as a precedence relation: A task t1 depends on
another task t2 if there exists a precedence constraint between them and if a task t2 is preceded
by task t1, denoted by t1 ≺ t2, then execution of t2 may not start until t1 has been completed;
for example, achieving t1 results in creating resources needed to perform t2. Such a set T of
interdependent tasks is called a complex task. Examples of such complex tasks are easy to find:
manufacturing, airport planning and supply-chain management can be considered as consisting of
(sets of) interrelated elementary tasks.

More precisely, a complex task T = (T,≺) is a non-empty set of tasks T = {t1, . . . tm},
partially ordered by a set of precedence constraints ≺ ⊆ T ×T . This complex task is given to a set
A = {A1, . . . An} of autonomous planning agents. We assume that the tasks in T have to be be
assigned to the agents in A by some task assignment f : T → A thereby inducing a partitioning
T = {T1, . . . , Tn} of T , where Ti = {tj ∈ T | f(tj) = Ai} denotes the set of tasks allocated to
agent Ai. As a result of this task assignment, Ai also inherits the precedence constraints that
apply to Ti, i.e., the set ≺i=≺ ∩ (Ti × Ti) constitutes the set of constraints for Ai. These sets
≺i together constitute the set ≺intra=

⋃n
i=1 ≺i of intra-agent constraints, while the remaining

set of constraints ≺inter=≺ \ ≺intra constitutes the set of inter-agent constraints. So each agent
Ai now is responsible for achieving the (complex) subtask (Ti,≺i) and the agents are dependent
upon each other via the inter-agent constraints ≺inter.

In this paper, we will not deal with the problem how the task assignment has been achieved.
In fact, this problem can be discussed separately from the coordination problem and is trivial to
solve in our application case.

Remark. When making a plan for a set of tasks Ti, the simplest case is when Ai exactly knows
how to perform a task t and the actions to perform it bear no relation to the actions performed for
another task t′. In that case, a plan for Ti can be easily composed from the set of actions needed
to perform each individual task. Sometimes, however, there is no such compositionality: the plan
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Figure 1: A set of interdependent tasks T = {t1, t2, t3, t4} and two agents A1 and A2 each assigned
to a part of T (a). If agent A1 decides to make a plan where t2 precedes t1 and A2 makes a plan
where t3 precedes t4 (see b), these plans cannot be combined.

to perform two tasks differs from a simple ordering of the actions performed for each of the tasks
separately. For example, if Ai has to perform the set of tasks Ti = {buy milk, buy cookies} then
his plan might be something along the lines of: go to supermarket ; get milk ; get cookies ; pay
; go home — the agent will not first go to the supermarket for the milk, and later return to
the supermarket for the cookies. Thus, in the latter case, the agent has to solve a real planning
problem to complete Ti.

In this framework we do not make any assumptions about the planning tools used by the agents,
or about the particular planning problems the agents have to solve. Whatever plan/schedule
representation the agents (internally) employ, we assume that a plan Pi developed by agent Ai for
its set of tasks Ti can always be specified by a structure Pi = (Ti, πi) that refines the structure
(Ti,≺i),i.e. ≺i⊆ πi, which means that an agent’s plan must respect the original precedence relation
≺i, but his plan may specify additional ordering constraints.

Since the agents are assumed to be competitive agents, the following restrictions have to be
obeyed in coordinating their planning activities:

1. during the planning process, the agents are completely autonomous, i.e., can choose a plan
for their part of the task independently from the other agents;

2. after planning, the individually constructed plans can be joined into a joint plan without
the need to revise an individual agent plan.

The following example shows that these requirements are not trivially met;here the agents do not
exchange information about their intended plans, and the result is that their plans are in conflict
and cannot be combined without revision.

Example 1 Consider the following simple case: (see Figure 1) we have two agents A1 and A2 and
four tasks T = {t1, t2, t3, t4}. The precedence relation ≺ is given as ≺= {(t1, t3), (t4, t2)}. Suppose
that t1, t2 are assigned to A1 and t3, t4 to A2. Then A1 has to solve the subtask ({t1, t2}, ∅), while
A2 has to solve ({t3, t4}, ∅). Suppose now that A1 chooses a plan where t2 is completed before
t1 and A2 chooses a plan where t3 is completed before t4. Then there exists no feasible joint
plan preserving ≺ and the individual plans as the combination of their plans with the inter-agent
constraints constitutes a cycle: t1 ≺ t3 ≺ t4 ≺ t2 ≺ t1.

In the above example, the solution is to add an additional constraint prior to planning, for
instance t1 ≺ t2, to the set of intra-agents constraints of agent A1. Then, whatever plans the agents
come up with (respecting their intra-agent constraints, of course), the results can be combined
into an acyclic joint plan.

This constitutes the essence of our pre-planning coordination approach: prior to planning, we
seek a minimal set of additional, intra-agent (precedence) constraints, such that any combination



of agent plans respecting these constraints can subsequently be combined into a feasible joint plan.
It can be easily shown that such a minimal set ∆ ⊆

⋃n
i=1 Ti × Ti of intra-agent constraints, called

coordination sets, always exist. In general, however, such sets are extremely difficult to find (cf.
[7]) and we have to relay on approximation algorithms to find non-minimal coordination sets that
guarantee uncomplicated independent planning.

To illustrate the practical use of our approach, we apply this pre-planning coordination ap-
proach to a logistic planning problem used in the AIPS2000 planning competition. First, however,
we will define the logistic planning problem and analyse its complexity into some detail.

3 Logistic planning problems

The logistic planning problem we will discuss consists of a set Loc of locations loci,j where i =
1, 2, . . . ,m and j = 1, 2, . . . n. A city ci is a subset ci = {loci,j | j = 1, . . . , n} of locations, where
each location can be visited by a truck. In each city ci we distinguish a special location loci,1 as
the airport of city ci. All airports are connected by directed flights and are visited by airplanes.
There is also a set of packages and for each package an order o consisting of a pick-up location
l ∈ Loc and a different delivery location l′ ∈ Loc. Let O denote the set of orders given. We
distinguish intra-city orders and intercity orders. An intra-city order requires a load action at
the pickup location, a move action and an unload action at the destination location. So the cost
of an intra-city order is minimally 3 actions. For an inter-city order, we distinguish a pre-order
phase, a plane-phase and a post-order phase. In the pre-order phase, an intra-city order is carried
out by transporting the package to the airport of the pick-up city, during the plane-phase, the
package is transported to the destination airport and finally in the post-order phase the package is
transported from the airport to the final destination. So an inter-city transportation might require
at least 6 load/unload actions and at least 3 move actions. We use a simple uniform cost model
where every load, unload and move action has unit cost. Hence, the cost of a plan simply equals
the number of actions it contains.

Given an instance (Loc,O) of this logistic planning problem we are looking for a plan P that
carries out all orders in O. Such a plan is a sequence of load/unload and move actions completing
all the orders in O. The cost of P , denoted by |P | is the sum of the cost of all actions occurring
in P and of course, we would like to obtain an optimal plan P ∗, i.e. a plan with minimum cost1.

3.1 A preplanning coordination approach to the logistic planning prob-
lem

Note that an instance (Loc,O) of the logistic planning problem can be easily translated to an
instance of a multi-agent planning problem: Every inter-city order oj consists of a linearly ordered
sequence of (at most) three elementary tasks tj1 ≺ tj2 ≺ tj3, where tj1 is the task of transporting
the package from its pickup location to the airport by the truck agent in the pick-up city, tj2
the plane task of transporting the package to the airport of the destination city and finally tj3 a
truck task consisting in transporting the package to its destination location. Note that the task
assignment is trivial here: intra-city orders are assigned to the truck agents, inter-city orders to the
plane agents. Note that there are no precedence constraints within the set of orders assigned to
a particular agent, so all precedence constraints are inter-agent constraints. It is easy to see that
a solution is not guaranteed if the agents plan completely independently from each other. So we
will apply the idea of adding additional constraints in order to ensure independent planning. The
method we use is using a protocol that implicitly adds some additional intra-agent constraints, by
scheduling parts of the tasks the agents have to solve.

The protocol we will use to solve the logistic planning problem (the so-called arbiter-0 protocol)
is surprisingly simple:

1Note that we are not looking for a minimum time plan



The arbiter-0 protocol

1. The total set of orders O orders is decomposed into a set of local transportation, pre-
transportation, plane orders and post-transportation orders.

2. Per city, the local truck agents have to make a plan for the local, the pre-transportation
orders and the post-transportation orders in their city. This plan, however has to satisfy
the additional constraints that every local and pre-transportation order should precede any
post-transportation order in the plan (Equivalently, they can be asked to make two plans:
one for the combined local and pre-transportation orders and one for the post-transportation
orders).

3. The planes have to make a plane plan for the plane orders.

4. All plans developed are assembled and combined into a joint plan, in such a way that (i) all
pre- and local transportation plans are combined; (ii) all actions in the local plans for pre-
and local transportation precede the actions in the plane plan, (iii) all post-transportation
plans are combined and (iv) all actions in the plane plan precede the actions in the combined
post-transportation plans.

A simple observation tells us that the plan thus composed indeed is a solution to the original
problem.

Observation 1 Let Pi be the plan of the truck agent i in city ci for the local and pre-transportation,
let Q be the flightplan of the planes and let Ri be the plan of the truck agents i for the post-
transportation phase. Then the simple composition Pi1 ◦ . . . Pin

◦ Q ◦ Ri1 ◦ . . . ◦ Rin
is a feasible

transportation plan for all the orders given.

The correctness of this plan can be easily verified: all local and pre- transportation plans can be
completed independently; at the end of an arbitrary sequence of these plans, all intercity packages
have arrived at the airport. Then the planes will deliver these packages at their destination airports
and if this plane plan is completed all packages have arrived at the destination airports. Now the
post transportation plans can be completed independently.

Surprisingly, this simple protocol, theoretically as well as experimentally, is one of the best
coordination protocols we can find for this special logistic problem. In order to evaluate the
performance of the protocol, we first concentrate on the single agent planning problems and their
solution.

3.2 Finding solutions to the local problems

Let Loc = {loc1, loc2, . . . , locn} be a set of locations in a given city (or a set of airports) and let
O ⊆ Loc×Loc a set of pickup-delivery orders over Loc. We assume that all locations are directly
connected and the cost to travel from ci to cj is the same (equal to 1) for all i 6= j. We would
like to construct a sequence S over Loc such that all pickup-delivery orders can be carried out by
visiting the locations in the order indicated by S. Such a visiting sequence S is a sequence over
Loc with possible repetitions. An order (l, l′) ∈ O can be fulfilled by S if there exists sequences
α, β, γ over Loc such that S = αlβl′γ, i.e. S contains an occurrence of l before an occurrence of
l′. A visiting sequence S over Loc is a solution to the instance (Loc,O) if every order in O can be
fulfilled by S.

The problem to find an arbitrary solution S is an easy problem: Let S′ be an arbitrary sequence
where every city in Loc occurs exactly once and consider the concatenation S = S′ ◦ S′. Since for
every (l, l′) ∈ O an occurrence of l in the first subsequence and an occurrence of l′ in the second
subsequence can be selected, clearly S is a solution. To find an optimal solution requires to find a
solution of minimal length. The problem, however, to find such a minimum solution is an NP-hard
problem, since the NP-hard minimum directed feedback vertex set (MDFVS) [6] is easily reducible
to it:



Proposition 1 Let G = (V,A) be an instance of the MDFVS-problem. Then S is a mini-
mum visiting sequence solving the instance (Loc,O), where Loc = V and O = A, if F = {v ∈
V | v occurs twice in S } is a minimum feedback vertex set of G.

Proof See Appendix2.

Consider now the following simple algorithm to construct a visiting sequence satisfying the
orders O and given the locations Loc:

Stage 0
Let O = {oi} and let S be empty;

Stage i
Let oi = (l, l′) and let the current sequence be S;
if both l an l′ do not occur in S add (l, l′) to the end of S; if only l occurs in S and
l′ does not occur in S, add l′ to the end of S; if only l′ does occur in S, add l to the
front of S; if both l and l′ occur in S then add l′ to the end of S only if ll′ does not
occur as a (scattered) subsequence of S;
If i < n goto stage i + 1 else stop.

It is not difficult to show that this algorithm achieves the approximation bound ε = 2. The
remarkable news is that, for the time being, we cannot do better than this: It is well-known [3]
that the MDFVS-problem is an APX-hard problem3 and until now, the best known approximation
algorithm guarantees an O(log n log log n)-factor approximation, that is, until now it has not been
shown that the problem is in APX. The following proposition shows that finding a polynomial
2− ε-approximation algorithm for the local planning problem would immediately imply that the
MDFVS-problem is in APX:

Proposition 2 Let δ > 1 be an arbitrary constant. The MDFVS-problem is δ-approximable iff
the local planning problem is (2− 2

δ+1 )-approximable.

Proof See Appendix.

Note that whenever δ = δ(n) is not bounded above by some constant, it follows that
sup{2− 2

δ(n)+1} = 2. Hence, we have

Corollary 1 The minimum feedback vertex set problem is in APX iff the local planning problem
is ε-approximable for some ε < 2.

Since, as we remarked, the best know approximation algorithm for directed minimum vertex
feedback set achieves an approximation ratio O(log n log log n), the best known approximation
ratio for the order routing problem therefore is ε = 2.

3.3 An approximation based on the arbiter-0 protocol

To make a comparison with the MDFVS-problem, we used a visiting sequence S as a solution to
the local planning problem (Loc,O). Such a visiting sequence, of course, can be easily translated
into a plan P : if S is the visiting sequence solution, the cost of the corresponding transportation
plan P is (taking into account the additional load/unload actions): |P | = 2|O|+ |S|. Let |Loc| = n
and |O| = m. Since the length of S is at most 2n and at most 2 times the length of the optimal

2Proofs are given to help the referee
3An optimization problem is an APX-problem if it has a polynomial c-approximation algorithm for some constant

c ≥ 1.



visiting sequence, it follows that the performance ratio, i.e. the length of the local plan thus
determined versus the length of the optimal local plan, is bounded above by

|P |
|P ∗|

≤ 2m + 2n

2m + n

where P ∗ is the optimal plan for the local planning problem. Assuming every location to occur in
at least one order, we have m ≥ n. In fact, it is easy to see that m ≥ |S| since according to the
approximation algorithm we use, every location l that occurs twice in S is the result of adding at
least two orders in which l occurs as source and/or destination. Hence, there must be at least two
orders for each such an occurrence. Therefore,

|P |
|P ∗|

≤ 4n + 2n

4n + n
=

6
5

= 1.2

Note that local planning problems constitute special cases (restrictions) of the complete logistic
planning problem we want to solve. Therefore, the following result is an immediate consequence of
the preceding observations and shows that currently the best we can hope for is an approximation
algorithm for the total logistic planning problem that achieves ε = 1.2:

Theorem 1 There exists no polynomial ε-approximation algorithm with ε < 1.2 for the logistic
planning problem as defined unless the minimum directed feedback vertex set is in APX.

We will now show that our arbiter-0 protocol performs remarkably well with respect to this
“lowerbound”: if we use the arbiter-0 protocol and the approximation algorithm discussed above
for solving the individual planning problems, we obtain an approximation algorithm for the total
planning problem with a performance ratio that is only slightly worse: ε = 1.25 instead of the
lowerbound 1.2:

Proposition 3 The logistic planning problem is 1.25-approximable.

Proof See Appendix.

Example 2 We present a tight example. Consider a problem instance with n+1 cities and n+1
locations per city. The set of orders is

O = {(loc1,1, loc1,j), (loc1,j , loc1,1)| j = 2, . . . , n + 1}
∪ {(locj,1, loc1,k)| j = 2, . . . , n + 1, k = 2, . . . , n + 1}
∪ {(loc1,1, locj,1)| j = 2, . . . , n + 1, k = 2, . . . , n + 1}

The total number of load/unload actions equals 4n + 4n + 2n, while the moves in a plan found is
2n + 1 + 2n + 1 + n and the optimal number of moves equals 2n + 2. Therefore, the performance
ratio equals 15n+2

12n+2 = 1.25.

Note that the difference between the drop in approximation quality between only solving the
local problems and the total planning problem can be attributed to the additional overhead caused
by coordinating the local plans.

4 Experimental results

The performance results obtained in the previous sections are theoretical and worst-case results.
In order to test and to compare our arbiter-0 approach with other planning approaches to the
logistic problem, in this section we will show some results using a benchmark set for general plan-
ners. With this comparison we want to show two things: First of all, the average performance of
our arbiter-0 approach is much better than should be expected, if the worst-case performance ratio



is taken as the norm. Secondly, the arbiter-0 protocol can be used to enhance the planning power
of existing planners significantly, thereby showing that it enables single agent planning technology
to be used for multi-agent problems.

In the Artificial Intelligence Planning and Scheduling (AIPS) competition of the year 2000,
several general-purpose planning systems competed in a number of planning domains. The logistic
planning problem as described in Section 3 was one of the domains featured. We have used the
AIPS logistics dataset in our experiments because of its status as benchmark problem set, and
also because it allows us to compare our decomposition-by-coordination approach to a selection
of centralized planning systems.

packages min nr moves Arbiter-0 TALplanner STAN HSP2
20 107 113 111 110 145
25 143 150 152 149 206
30 175 182 183 177 250
35 177 181 186 182 264
40 228 239 239 232 337
45 269 284 285 276 –
50 286 299 306 293 –
55 319 327 338 326 –
60 369 391 398 376 –
65 371 387 397 382 –
70 405 426 437 416 –
75 438 458 471 448 –

Table 1: Results for 12 randomly chosen instances from the AIPS00 logistics dataset. For each
instance the minimum number of moves is determined and for each planner the number of moves
produced is given

In Table 1, we compare plan cost (in terms of the number of moves in a plan) for four planners.
In the second column the costs of the optimal plans are given as calculated by encoding the
complete instance as an ILP-problem and solving it exactly (of course not taking into account the
time needed to find a solution); the third column represents the cost of the plans produced using
the arbiter-0 protocol; the fourth, fifth, and sixth columns represent a selection of the planning
systems competing in the AIPS: the competition-winning TALplanner [8], and the above-average
performers STAN [10] and HSP2 [1]. Each row in Table 1 represents an instance in the dataset,
characterized by the number of packages that have to be transported for that instance. Of the
roughly 200 instances in the dataset, we have made a random selection of 12.

It will come as no surprise that the results produced using arbiter-0, especially since the local
plans in fact were solved exactly, deviate little from the optimal plans — on average less than 5%.
These results are significantly better than what would be expected (25%) based on the worst-case
performance ratio.

The plans produced by arbiter-0 are comparable in quality with the plans produced by STAN
( only 2% deviating from the optimum) and TALplanner (about 7%). To illustrate that for some
solvers the problems in the AIPS dataset are far from trivial, HSP2 does not manage to solve
(within reasonable time and memory constraints) any instances where more than 40 packages
have to be transported and produces significantly worse plans (about 44% deviating from the
optimum). The cpu-times needed to produce the plans by the arbiter-0 protocol were a few
seconds for each of the planning instances occurring in Table 1.

As we remarked before, the arbiter-0 protocol cannot only be used to solve multi-agent planning
problems using simpler single-agent planning tools; we can also apply it as a pre-processing step
for a given planning system that has trouble solving such multi-agent planning problems. The
idea is that the problem instance then can be decomposed into smaller subproblems that can be
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Figure 2: Savings in CPU times and plan cost (#steps) when STAN and HSP2 make use of the
arbiter-0 protocol as a pre-processing step.

solved independently by the planning system, whereafter the solutions to the subproblems can be
simply combined into a solution to the whole problem instance.

Specifically, what we propose is the following method: using the arbiter-0 protocol, decompose
a multi-agent logistics instance into a set of single-agent planning problems. Then, we feed each
of the single-agent planning subproblems to the planning system, and combine the results (plans)
according to the protocol into an overall plan, thereby solving the multi-agent instance. What we
would expect to see using this method is savings in computation time without significant loss in
plan quality compared to the use of the planner solving the complete instance. For this experiment
we chose STAN (since it produced almost optimal plans for the complete instance) and HSP-2
(since it consumed a lot of cpu time).

To test these expectations we randomly selected 51 problems from the AIPS00 planning dataset
and observed both the reduction in cpu-time and the reduction in plan cost comparing a solution
produced by using only the planner with a solution by using the planner in combination with the
arbiter-0 protocol. The results are given in Figure 2.

It can be observed that both STAN and HSP2 definitely benefit from pre-processing by the
arbiter-0 protocol: both planning systems regularly achieve savings in computation time of over
80%. In addition, we can see that HSP2 produces plans that are on average 20% cheaper, i.e.,
requiring 20% less actions. Also note that the plan cost for STAN does not increase significantly
when using arbiter-0. Finally, it can be observed that even after a decomposition into smaller
subproblems for quite some instances HSP-2 again was not able to produce a solution within
reasonable time. This means that even for the local planning problems HSP-2 still has considerable
difficulty in solving them.



5 Conclusion

We discussed a task-based planning framework and its application to a logistic planning problem.
The framework allows us to identify constraints on subproblems to be solved by agents such that
the final solution can be obtained by independent planning for these subproblems. We illustrated
the framework with an application to a logistic planning problem used in the AIPS00-planning
competition and we showed that there exists a very simple coordination protocol derived from the
general framework for multi-agent planning that enables us to decompose the planning problem
into simpler subproblems that can be solved independently. This coordination by decomposition
approach does not result in inefficient plans when compared to a theoretically optimal centralized
planning system. Rather, a centralized planning system will typically have trouble finding a
solution for the entire multi-agent instance at once. Consequently, our approach, where each
agent can make a plan independently of the other agents, will result in more efficient plans.

It is interesting to note4 that other approaches have also dealt with problem decomposition
in planning. For instance, the planning systems STAN [5] and RealPlan [11] try to extract a
number of particular subproblems, such as scheduling or transportation problems, as independent
subproblems from the original problem. Thus, these systems decompose the original problem in a
certain sense orthogonal to our decomposition method: we decompose on the basis of agents exe-
cuting parts of the problem, the aforementioned planners decompose on the basis of subproblems.
As our results suggest, combining both decomposition methods (e.g., running coordinated STAN)
yields even more savings than using only one decomposition method, as Figure 2 shows.
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A Appendix

A.1 Proof of Proposition 1

Without loss of generality we may assume that G does not contain isolated nodes. Let S ∈ V ∗ be a
minimum solution to (Loc,O) = (V,A) and consider F = {v ∈ S | v occurs twice in S}. Observe
that, by assumption, every node of V occurs in at least one pair (v, v′) of A, every location v
occurs at least once in S.

1. F is a feedback vertex set of G. Let C = (v0, v1, . . . vk, v0) be a directed cycle in G = (V,A).
We show that for at least one vi ∈ C, vi ∈ F . On the contrary, assume that for no
i ∈ {0, 1, . . . , k}, vi occurs twice in S. For i = 0, 1, . . . k, let ji be the (unique) index of vi in
S. Hence, there exists a total ordering ji0 < ji1 < . . . < jik

of these index positions in S.
But this implies that the order (vk, v0) ∈ A, requiring that S should contain an occurrence
of vk occurring before an occurrence of v0; contradiction.

2. F is a minimum feedback vertex set. If F is not a minimum feedback vertex set, there exists
another subset F ′ of V with |F ′| < |F | such that F ′ intersects every cycle of G. But then it
is easy to see that S is not a minimum solution: Let A′ = {(v, v′) ∈ A | v′ 6∈ F ′} and take
the instance (V,A′). Clearly, since G′ = (V,A′) is acyclic, there exists a topological ordering
T of nodes in V respecting A′. Now let S′ = T.F ′. It is easy to show that S′ is a solution to
(V,A): take an order (v, v′) ∈ A. If (v, v′) ∈ A, T and therefore S′ is a sequence satisfying
(v, v′). If (v, v′) 6∈ A, v occurs in T and v′ occurs in F , hence S′ satisfies (V,A). Therefore,
S′ is a smaller solution than S; contradiction. Hence, F is a minimum feedback vertex set.

A.2 Proof of Proposition 2

(⇒) Assume that the MDFVS-problem is δ-approximable for some δ > 1. We derive a 2 − 2
δ+1 -

approximation algorithm for the order routing problem as follows: (i) Given an instance (Loc,O) of
the order routing problem, find an approximable minimum feedback vertex set F for the directed
graph G = (Loc,O). (ii) Determine in time O(|Loc| + |O′|) a topological ordering S′ of Loc
compatible with the partial order O′ = {(l, l′) ∈ O | l′ 6∈ F} and let S = S′. < F > where < F >
is an arbitrary ordering of the locations l occurring F . Clearly, S is a solution of (Loc,O) and the
performance ratio of this approximation algorithm equals:

|S|
S∗ =

|Loc|+ |F |
|Loc|+ |F ∗|

≤ |Loc|+ δ × |F ∗|
|Loc|+ |F ∗|

where F ∗ denotes the optimal solution, i.e. a minimum feedback vertex set of G = (Loc,O). Note
that |F ∗| ≤ |Loc|. Hence, this ratio is bounded above by

|Loc|+ |Loc|
|Loc|+ |Loc|

δ

= 2× δ

δ + 1
= 2− 2

δ + 1

(⇐) Conversely, assume that the order routing problem is ε = 2 − 2
δ+1 approximable for some

δ > 1. We prove that MDFVS has a δ-approximation algorithm.
Let G = (V,A) be an instance of the MDFVS-problem. Consider the instance (Loc,O) with

Loc = V and O = A of the order routing problem. Let S be a solution found by the approxima-
tion algorithm for the order routing problem and let S∗ be an optimal solution to the instance.
Without loss of generality we can assume that no vertex l occurs more than twice in S. Let



F ∗ = {v|v occurs twice in S∗ } and F = {v|v occurs twice in S}. We know that both F and F ∗

are feedback vertex sets and that F ∗ is a minimum feedback vertex set of G (see . . . ).
Note that for all instances5 I, |SI |

|S∗
I | = |V |+|F |

|V |+|F∗| ≤ 2 − 2
δ+1 . Let f : N → N be a bounding

function such that for all instances such that |F ∗| = n, |F | ≤ f(n) × n. We will show that
f(n) = δ.

Let |V | = m and |F ∗| = n. Then we have:

m + |F |
m + n

≤ m + |F |
m + F

f(n)

≤ 2− 2
δ + 1

where |F | ≤ m. The left-hand side is maximized choosing |F | = m. Hence,

2m

m + m
f(n)

=
2

1 + 1
δ

≤ 2− 2
δ + 1

implying that f(n) ≤ δ

A.3 Proof of Proposition 3

To determine this performance ratio, let m̂0
pre, m̂0

plane, m̂0
post denote the number of moves found

using the local approximation algorithms for the pre-transportation and the plane transportation
phase and the post transport phase, respectively. Note that the number of moves equal the length
of the visiting sequence found by the algorithm. We note that m̂0

post = m0
post is optimal, since

this number of moves can be determined exactly (the local problem to be solved is the problem of
finding a visiting sequence in an acyclic order graph, and this problem is polynomially solvable).
For the remaining number of moves we have m̂0

pre ≤ 2m0
pre and m̂0

plane ≤ 2m0
plane.( Here, the right-

hand side variables denote the optimal number of moves in the pre-transportation, the plane and
the post-transportation plan, respectively. The same holds for the remaining variables) We will
use these numbers to relate them to the number of load/unload actions that have been executed.

Take, for example, m̂0
pre (the case for m̂0

plane is analogous). Let m̂0
pre = m+2k where m+k = n,

n is the total number of locations and k the number of locations occurring twice in the visiting
sequence found. This immediately implies that the number of orders to be executed in the local
plan must have been at least (m− 1)+2k. Therefore, the number of load/unload actions must be
l0pre = 2(m− 1 + 2k) and the total cost of the pre-transportation plans must equal l0pre + m̂0

pre =
2(m − 1 + 2k) + m + 2k = 3m + 6k − 2 Analogously, we have the following relationships: the
number of load /unload actions for the plane equals l0plane = 2(m′ − 1 + 2k′) if m̂0

plane = m′ + 2k′.
Hence, l0plane + m̂0

plane = 3m′ + 6k′ − 2.
Hence, denoting the plan as computed by p̂0, we derive

|p̂0|
|p∗|

=
l0 + m̂0

p∗

=
l0 + m̂0

pre + m̂0
plane + m0

post

p∗

≤
3m + 6k − 2 + 3m′ + 6k′ − 2 + l0post + m0

post

3m + 5k − 2 + 3m′ + 5k′ − 2 + l0post

Note that m0
post equals the number of (destination) locations mentioned in the post planning part.

The right-hand side is maximized if m0
post = m + k = k = n and m′ + k′ = k′ = n. Since in that

case we also have l0post = 2n, we derive

|p̂0|
|p∗|

≤ 15n− 4
12n− 4

≤ 5
4

5Without loss of generality we may assume that G does not contain isolated points.


